Media móvil Este ejemplo le enseña cómo calcular el promedio móvil de una serie de tiempo en Excel. Una gran ventaja se utiliza para suavizar las irregularidades (picos y valles) para reconocer fácilmente las tendencias. 1. En primer lugar, echemos un vistazo a nuestra serie de tiempo. 2. En la ficha Datos, haga clic en Análisis de datos. Nota: no puede encontrar el botón Análisis de datos Haga clic aquí para cargar el complemento Herramientas de análisis. 3. Seleccione Media móvil y haga clic en Aceptar. 4. Haga clic en el cuadro Rango de entrada y seleccione el rango B2: M2. 5. Haga clic en el cuadro Interval y escriba 6. 6. Haga clic en el cuadro Rango de salida y seleccione la celda B3. 8. Trazar un gráfico de estos valores. Explicación: dado que establecemos el intervalo en 6, el promedio móvil es el promedio de los 5 puntos de datos anteriores y el punto de datos actual. Como resultado, los picos y valles se suavizan. El gráfico muestra una tendencia creciente. Excel no puede calcular el promedio móvil para los primeros 5 puntos de datos porque no hay suficientes puntos de datos anteriores. 9. Repita los pasos 2 a 8 para el intervalo 2 y el intervalo 4. Conclusión: Cuanto mayor sea el intervalo, más se suavizarán los picos y los valles. Cuanto más pequeño es el intervalo, más cerca están las medias móviles de los puntos de datos reales. Análisis Técnico Promedios Promedios móviles se utilizan para suavizar las oscilaciones a corto plazo para obtener una mejor indicación de la tendencia de los precios. Los promedios son indicadores de tendencias siguientes. Una media móvil de precios diarios es el precio medio de una acción durante un período determinado, que se muestra día a día. Para calcular el promedio, usted tiene que elegir un período de tiempo. La elección de un período de tiempo es siempre una reflexión sobre, más o menos lag en relación con el precio en comparación con un mayor o menor suavizado de los datos de precios. Los promedios de los precios se utilizan como indicadores de tendencias tras los indicadores y principalmente como referencia para el soporte de precios y la resistencia. En general, los promedios están presentes en todo tipo de fórmulas para suavizar los datos. Oferta especial: quotCaptura de ganancias con análisis técnico Media simple de movimiento Una media móvil simple se calcula sumando todos los precios dentro del período de tiempo elegido, dividido por ese período de tiempo. De esta manera, cada valor de datos tiene el mismo peso en el resultado promedio. Figura 4.35: Promedio móvil simple, exponencial y ponderado. La curva gruesa y negra en el gráfico de la figura 4.35 es una media móvil simple de 20 días. Promedio móvil exponencial Un promedio móvil exponencial da más peso, en porcentaje, a los precios individuales en un rango, basado en la siguiente fórmula: EMA (EMA anterior) (anterior EMA (1 EMD de ndash)) La mayoría de los inversionistas no se sienten cómodos con un Expresión relacionada con el porcentaje en el promedio móvil exponencial en lugar, se sienten mejor utilizando un período de tiempo. Si desea saber el porcentaje en el que trabajar con un período, la siguiente fórmula le da la conversión: Un período de tiempo de tres días corresponde a un porcentaje exponencial de: La curva fina y negra en la figura 4.35 es un movimiento exponencial de 20 días promedio. Promedio móvil ponderado Un promedio móvil ponderado pone más peso en datos recientes y menos peso en datos antiguos. Una media móvil ponderada se calcula multiplicando cada dato con un factor del día ldquo1rdquo hasta el día ldquonrdquo para los datos más antiguos a los más recientes, el resultado se divide por el total de todos los factores multiplicadores. En una media móvil ponderada de 10 días, hay 10 veces más peso para el precio hoy en proporción al precio hace 10 días. Del mismo modo, el precio de ayer recibe nueve veces más peso, y así sucesivamente. La curva fina y negra en la figura 4.35 es una media móvil ponderada de 20 días. Simple, Exponencial o Ponderado Si comparamos estos tres promedios básicos, vemos que el promedio simple tiene el más suavizado, pero generalmente también el mayor retraso después de las reversiones de precios. El promedio exponencial se encuentra más cerca del precio y también reaccionará más rápido a las oscilaciones de precios. Pero las correcciones de un período más corto también son visibles en este promedio debido a un efecto menos suavizante. Finalmente, el promedio ponderado sigue de cerca el movimiento de precios. Determinar cuál de estos promedios utilizar depende de su objetivo. Si desea un indicador de tendencia con mejor suavizado y poca reacción para movimientos cortos, el promedio simple es mejor. Si desea un suavizado donde todavía puede ver los cambios de período corto, entonces el promedio móvil exponencial o ponderado es la mejor opción. Los promedios móviles exponenciales son más que el estudio de una secuencia de números en orden sucesivo. Los primeros practicantes del análisis de series de tiempo estaban más preocupados por los números de series temporales individuales que por la interpolación de esos datos. Interpolación. En forma de teorías de probabilidades y análisis, se produjo mucho más tarde, a medida que se desarrollaron patrones y se descubrieron correlaciones. Una vez comprendidas, se dibujaron varias curvas y líneas de forma a lo largo de las series de tiempo en un intento de predecir dónde podrían ir los puntos de datos. Éstos ahora se consideran los métodos básicos usados actualmente por los comerciantes técnicos del análisis. Análisis de la cartografía se remonta a Japón del siglo 18, sin embargo, cómo y cuando los promedios móviles se aplicó por primera vez a los precios de mercado sigue siendo un misterio. Se entiende generalmente que los promedios móviles simples (SMA) se usaron mucho antes de los promedios móviles exponenciales (EMA), porque los EMAs se construyen sobre el marco SMA y el continuo SMA fue más fácil de entender para el trazado y los propósitos de seguimiento. Promedios móviles simples (SMA) Los promedios móviles simples se convirtieron en el método preferido para el seguimiento de los precios de mercado porque son rápidos de calcular y fáciles de entender. Los primeros profesionales del mercado operaban sin el uso de las métricas de gráficos sofisticados en uso hoy en día, por lo que se basaron principalmente en los precios de mercado como sus únicos guías. Ellos calcularon los precios de mercado a mano, y graficaron esos precios para indicar tendencias y dirección de mercado. Este proceso fue bastante tedioso, pero resultó bastante rentable con la confirmación de nuevos estudios. Para calcular una media móvil sencilla de 10 días, simplemente añada los precios de cierre de los últimos 10 días y divida por 10. La media móvil de 20 días se calcula sumando los precios de cierre en un período de 20 días y divida por 20, y pronto. Esta fórmula no sólo se basa en los precios de cierre, pero el producto es una media de los precios - un subconjunto. Los promedios móviles se denominan movimientos porque el grupo de precios utilizado en el cálculo se mueve de acuerdo al punto del gráfico. Esto significa que los días viejos se abandonan a favor de los nuevos días de cierre de precios, por lo que se necesita siempre un nuevo cálculo que corresponda al marco temporal del promedio empleado. Por lo tanto, un promedio de 10 días se recalcula añadiendo el nuevo día y cayendo el día 10, y el noveno día se deja caer en el segundo día. Promedio móvil exponencial (EMA) El promedio móvil exponencial ha sido refinado y más comúnmente utilizado desde la década de 1960, gracias a los experimentos de los practicantes anteriores con la computadora. La nueva EMA se centraría más en los precios más recientes que en una larga serie de puntos de datos, ya que se requiere la media móvil simple. EMA actual ((Precio (actual) - anterior EMA)) X multiplicador) EMA anterior. El factor más importante es la constante de suavizado que 2 / (1N) donde N el número de días. Una EMA de 10 días 2 / (101) 18.8 Esto significa que una EMA de 10 periodos pesa el precio más reciente 18.8, un EMA de 20 días de 9.52 y 50 días de EMA 3.92 de peso en el día más reciente. La EMA trabaja ponderando la diferencia entre el precio de los períodos actuales y la EMA anterior, y agregando el resultado a la EMA anterior. Cuanto más corto sea el período, más peso se aplicará al precio más reciente. Líneas de Ajuste Mediante estos cálculos, se trazan puntos, revelando una línea de ajuste. Las líneas de ajuste por encima o por debajo del precio de mercado significan que todos los promedios móviles son indicadores rezagados. Y se utilizan principalmente para seguir las tendencias. No funcionan bien con los mercados de la gama y los períodos de la congestión porque las líneas de la adaptación no denotan una tendencia debido a una carencia de los altos o de los altos más bajos evidentes. Además, las líneas de ajuste tienden a permanecer constantes sin indicio de dirección. Un aumento de la línea de montaje por debajo del mercado significa un largo, mientras que una línea de caída de ajuste por encima del mercado significa un corto. (Para obtener una guía completa, lea nuestro Tutorial de Moving Average). El propósito de emplear una media móvil simple es detectar y medir tendencias al suavizar los datos utilizando los medios de varios grupos de precios. Se observa una tendencia y se extrapola en un pronóstico. Se supone que los movimientos de tendencias anteriores continuarán. Para la media móvil simple, una tendencia a largo plazo se puede encontrar y seguir mucho más fácil que una EMA, con la suposición razonable de que la línea de ajuste se mantendrá más fuerte que una línea EMA debido a la mayor atención a los precios medios. Un EMA se utiliza para capturar movimientos de tendencia más cortos, debido al enfoque en los precios más recientes. Por este método, un EMA supone para reducir cualquier rezago en la media móvil simple así que la línea del ajuste abrazará precios más cercano que una media móvil simple. El problema con la EMA es el siguiente: Su tendencia a romper los precios, especialmente durante los mercados rápidos y períodos de volatilidad. La EMA funciona bien hasta que los precios rompen la línea de ajuste. Durante los mercados más altos de la volatilidad, usted podría considerar el aumento de la longitud del término medio móvil. Incluso se puede cambiar de un EMA a un SMA, ya que el SMA suaviza los datos mucho mejor que una EMA debido a su enfoque en medios a más largo plazo. Indicadores de Tendencia Como indicadores rezagados, los promedios móviles sirven como líneas de apoyo y resistencia. Si los precios descienden por debajo de una línea de ajuste de 10 días en una tendencia al alza, es probable que la tendencia al alza pueda estar disminuyendo, o al menos el mercado pueda estar consolidándose. Si los precios se rompen por encima de un promedio móvil de 10 días en una tendencia bajista. La tendencia puede estar disminuyendo o consolidándose. En estos casos, emplee un promedio móvil de 10 y 20 días juntos y espere a que la línea de 10 días cruce por encima o por debajo de la línea de 20 días. Esto determina la siguiente dirección a corto plazo para los precios. Para períodos de más largo plazo, observe los promedios móviles de 100 y 200 días para la dirección a más largo plazo. Por ejemplo, usando los promedios móviles de 100 y 200 días, si el promedio móvil de 100 días cruza por debajo del promedio de 200 días, se llama cruz de muerte. Y es muy bajista para los precios. Un promedio móvil de 100 días que cruza por encima de un promedio móvil de 200 días se llama la cruz de oro. Y es muy optimista para los precios. No importa si se utiliza un SMA o un EMA, porque ambos son indicadores de tendencia. Es sólo en el corto plazo que la SMA tiene ligeras desviaciones de su contraparte, la EMA. Conclusión Los promedios móviles son la base del análisis gráfico y de series temporales. Los promedios móviles simples y los promedios móviles exponenciales más complejos ayudan a visualizar la tendencia suavizando los movimientos de precios. El análisis técnico a veces se refiere como un arte en lugar de una ciencia, que llevan años para dominar. (Obtenga más información en nuestro Tutorial de análisis técnico.)
No comments:
Post a Comment